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The Greenhouse Gases

ifce: NASA/Goddard Space Flight Center



Sensitivity of the northern Gulf of
Mexico to global climate change

'l Dominated by discharges of one of the world largest rivers
- the Mississippi River (drains 41% of the area of the
contiguous 48 states);

Ml Coastal Louisiana’s land loss rates are the highest in the
U.S. (60 - 80% of the nation’s total wetland loss);

Ml Supports one of the most valuable U.S. fisheries,
exceeded only by the combined Pacific Coast and Alaska
regions;

Ml Affected by tropical storms and hurricanes;

M Continental shelf of the northern Gulf of Mexico is the site
of the largest and most severe coastal hypoxic (“dead”)
zone in the western Atlantic Ocean (> 22,000 km?).



[ How can GCC affect the northern Gulf
of Mexico, and the hypoxic zone in
particular?

Ml What can we do about it?
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Variations of the Earth’s surface temperature; year 1000 to year 2100
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Global water cycle
(103 km3 yr1)
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Year 2090 - 2099
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How Hypoxia develops
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Orbview—2 SeaWiFSs

Chiorophvil estimate — 0OC2 alilgorithm
February 5, 1999 (1807 UTC)

Earth Scan Lab, Coastal Studies Inst.
Louisilana State University




G. Muller-Niklas, 1997.




Shrimp (kg h-)

Hypoxia = Dissolved O, < 2 mg/L (=2 ppm)
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Photograph by Kerry St.Pe, LADEQ




If you cannot breathe,
nothing else matters.

(American Lung Association)



Occurrence of mid-summer hypoxia 1985-2001
(Source: N. Rabalais, LUMCON)
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N. Rabalais, LUMCON
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Trends in the Mississippi River Runoff, Nitrate
Concentration, and Nitrate Flux 1954-2000

Period Q (m3 s) N-NO, (mg I-1) N-NO, flux (kg d-1)

1968-82 x=13,849 x=1.05 x=1,34x10%
SD=7,104 SD=0.49 SD=0.99x106¢
n=180 n=153 n=153
(p<0.001) (p<0.001) (p<0.001)

1954-67 x=11,381 x=0.61 x=0.63x106
SD=6,359 SD=0.28 SD=0.49x106¢
n=161 n=160 n=160
(p<0.001) (p<0.001) (p<0.001)




Coupling between river flow and hypoxia

Mississippi River discharge Areal extent of hypoxia
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What will happen in the next 100
years?

Prediction is very difficult,
especially about the future
(Niels Bohr)
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O, concentration (mg I-)
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Model Scenarios

M 30% reduction in MR runoff (Wolock and McCabe,
1999)

[AMR nitrate concentration unchanged with respect to
1954 —1967

' W20% increase in MR runoff (Miller and Russell, 1992)
M4 °C increase in NGM temperature (IPCC, 2001)

[ WM20% increase in MR runoff + 4 °C increase in NGM
temperature (likely GCC scenario; IPCC, 2001)

[M30% reduction in MR nitrate flux (proposed
management action; Rabalais et al., 2002)
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O, concentration (mg I)

+20% MR runoff
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O, concentration (mg I)

+20% MR runoff +4°C
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Model Results

Scenario YWMH  YWSH %
(<2mg/l) (<1 mgl) Change

1. Nominal model 19 16 -

2. -30% MR runoff -58

3. MR nitrate 1954-1967 0 00

4. +20% MR runoff 26 20 +37

5. +4 °C 25 19 +32

6. +20% MR runoff +4 °C 31 26 +63

7. -30% MR nitrate flux 12 14 -37

The total number of years = 45

Justic et al., 2003



What about hurricanes?
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(Adapted from: http://www.amerwxccnpt.com/tropical/Dolly/dolly _9608222130_4km.jpg)




Hurricane Danny 7/16/97 - 7/26/97
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Sampling design
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Comparison of Continuous Record on station C6B
(19.2 m) and Wind at Grand Isle from 6/23/97 - 7/28/97
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Comparison of Continuous Record on station C6B
(19.2 m) and Wind at Grand Isle from 8/15/96 - 9/20/96
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Conclusions

M The ecosystem of the northern Gulf of Mexico
appears to be highly sensitive to GCC.

MModel simulations suggest that an increase of 20%
In the annual Mississippi River discharge,
accompanied by a 4 °C increase in ambient water
temperatures, which are likely under a 2XCO,
scenario, may cause a 60% increase in the
frequency of hypoxia.

MGCC could have major impacts on the abundance
and diversity of benthic and epibenthic species,
iIncluding those that are commercially important.




What can we do?

@ Reduce MR nutrient load.

@ Better management of fisheries
resources to lessen negative impacts
resulting from GCC.
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